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Complete listing of order parameters for a crystalline phase transition:
A solution to the generalized inverse Landau problem

Dorian M. Hatch and Harold T. Stokes
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 24 August 2001; published 12 December 2001!

For a given group-subgroup transition, the complete set of order parameters, primary and secondary, de-
scribe the distortions that accompany this transition. The task of obtaining all order-parametric distortions for
a group-subgroup pair is a long standing problem. An algorithm is presented here which obtains the irreducible
representations and order parameter directions for an arbitrary transition. Examples are given for a variety of
phase transitions showing the application and utility of the procedure. It is shown that a unique selection of
primary order parameters is not always possible.
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I. INTRODUCTION

In two papers of the middle 1970’s Ascher an
Kobayashi1,2 defined two problems of great interest in th
study of phase transitions. The first is referred to as the di
Landau problem: given the symmetry groupH of a high
symmetry phase, find all the possible order parame
~OP’s!; for each of these determine the symmetriesL of pos-
sible low symmetry phases; write down the thermodynam
potentials that describe the phases and the transitions
tween them and find a suitable way of classifying these
tentials. In these papers1,2 they stated they did not want t
face this problem in its full generality but would instea
study a less ambitious problem, the inverse Landau probl
given a groupH and a subgroupL, find the irreducible rep-
resentation~IR! of H determined by this transition.

Finding the IR of the symmetry reduction is importa
since it defines the cause of the transition. In the Lan
philosophy an OP is a vector in an IR space. This vector w
determine a set of symmetry elements inH which leave the
vector invariant, thus determining an isotropy subgroupL
~epikernel in the terminology of Ascher! and thus a relation-
ship between the two groups. The search for the isotr
subgroup and the associated OP in the IR has been studi
several contexts. For space groups, listings of isotropy s
groups have been given by Toledano and Toledano3 and by
Stokes and Hatch.4 These publications addressed the dir
Landau problem for crystalline materials. Isotropy subgrou
of OP directions in the context of other symmetry chang
have also been studied, e.g., in non-Kekule´-type isoelec-
tronic molecules,5 for the breakdown of translational symm
try of a polyethylene chain,6 and for the formation of cubic
phases in complex fluids.7

The free energy of a crystal can be expanded as a su
individually invariant polynomial forms of the OP compo
nents. The values of the OP at the minimum of the f
energy determine the OP direction and therefore the resu
isotropy subgroup. The OP vector corresponds to a phys
property or distortion of the high symmetry structure~sym-
metry H). When the OP becomes nonzero it determines
structure of reduced symmetry~symmetryL).

Often only a single OP is referred to in the description
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a group-subgroup transition. The OP which defines the tr
sition and determines the symmetry of the lower symme
phase is called the primary OP. Quite generally, howev
OP’s associated with multiple IR’s are coupled causing b
primary and secondary OP’s to be significant for a giv
structural transition. A secondary OP is one which couples
the primary OP in a very specific way. The coupling is a
ways of the form linear in the secondary OP and quadratic
higher in the primary OP. At the phase transition the prima
OP becomes nonzero. The secondary OP also becomes
zero because of this coupling with the primary OP. The
secondary OP’s are invariant underL, and in fact are left
invariant by a supergroup8 of L. The terminology of ‘‘im-
proper’’ is often used when the property appears as a sec
ary order parameter. For example, an improper ferroelast
one in which the strain is a secondary OP. There also e
group-subgroup relationships where a single primary OP
not sufficient for defining the group-subgroup relationsh
and multiple~coupled! primary OP’s induce the transition.8

Then it is necessary to have two or more primary OP’s dr
the transition.

In this paper we present our approach to the solution
the generalized inverse Landau problem, i.e., given a gr
H and a subgroupL, find all irreducible representations an
OP directions ofH determined by this transition. Up to now
there is no published solution to this problem. In Sec. II
describe an algorithm used to obtain the IR’s associated w
a given group-subgroup pair. Primary IR’s as well as all s
ondary IR’s are obtained and there is no limitation that
IR’s must be at points of symmetry of the Brillouin zon
Thus a complete listing of IR’s associated with the transit
are given. In addition we obtain OP directions within the
space. We refer to this algorithm as the complete order
rameter listing~COPL! algorithm. In Sec. III we give some
examples to which the algorithm has been applied. We sh
that the choice of OP~s! may be arbitrary in a given case
since two or more distinct selections of the~multiple! pri-
mary OP’s may determine the same subgroup. The algori
has been implemented and is part of theISOTROPYsoftware9

available on the internet.

II. ALGORITHM

We now describe the COPL algorithm which finds all IR
and associated OP’s which arise in a given phase trans
©2001 The American Physical Society13-1
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DORIAN M. HATCH AND HAROLD T. STOKES PHYSICAL REVIEW B65 014113
H→L, whereL,H. We assume that we know which of th
elements ofH are contained inL. In practice, this means tha
we know the space group symmetry ofL, the lattice vectors
of L in terms of the lattice vectors ofH, and the origin of the
space group setting ofL with respect to that ofH.

In general, an IR will be involved in a phase transition
the subduction frequency

ns5
1

uLu (
hPL

x~h! ~1!

is nonzero. In this expression,x(h) is the character of the
space group operatorh, anduLu is the order ofL. ~In practice,
we sum over the operators which the IR maps onto dist
matrices, anduLu becomes the number of these operato!
The subduction frequencyns is nonzero if and only if there
exists a nonzero solutionhW which satisfies the equation

D~h!hW 5hW , ~2!

simultaneously for every operatorhPL. In this expression,
D(h) is the n3n matrix onto which the IR ofH maps the
operatorh, andhW is ann dimensional vector which points in
the direction of the OP. In practice,hW needs to satisfy Eq.~2!
only for the generators ofL. This usually results in a sma
number of simultaneous equations to be solved.

The space-group symmetry determined by the OP can
obtained by puttinghW back into Eq.~2! and trying every
operatorhPH ~try all operators inH, not just those inL).
The set of operatorsh which satisfy Eq.~2! form a groupL8
which is a supergroup~either proper or improper! of L, i.e.,
L#L8#H. If L85L the OP is primary; otherwise the OP
secondary.~This rule becomes more complicated in the ca
of coupled primary OP’s. See the examples in the next s
tion.!

In principle, we could find all OP’s by simply evaluatin
Eq. ~1! for every IR of H. When we find an IR for which
nsÞ0, we could then find the direction of the order para
eter using Eq.~2!. In practice, a space group has an infin
number of IR’s, so we must restrict the search in some w

IR’s are associated with stars ofkW vectors. A star ofkW

vectors is a set of distinct~nonequivalent! kW vectors gener-
ated by point operations in the space group, i.e., give
vector kW , its star is given by$kW ,R2kW ,R3kW , . . . ,RmkW%, where
Ri are point operators in H. The vectors
kW ,R2kW ,R3kW , . . . ,RmkW are called ‘‘arms’’ of the star. We con
sider as arms of the star only distinctkW vectors, i.e., those
which are not related by a vector of the reciprocal lattice

It can be shown that the subduction frequencyns in Eq.
~1! will be zero unless at least one of the arms of the sta
kW satisfies

kW• tW5 integer ~3!

for every lattice vectortW of L ~including vectors to any cen
tered lattice points!. This gives us a systematic way of lim
iting the number of IR’s to be tested.

We write the primitive lattice vectorstW i of L as
01411
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j

Ai j aW j , ~4!

whereaW j are primitive lattice vectors ofH. By primitive, we
mean that integer linear combinations of the lattice vect
reach all lattice points, including any centered lattice poin
SinceL,H, the elementsAi j must be integers. VectorskW in
reciprocal space are written as

kW5(
j

BjbW j , ~5!

wherebW j are reciprocal lattice vectors ofH such that

bW j•aW i5d i j . ~6!

Equation~3! can now be written as

kW• tW i5(
j

Ai j Bj5ni , ~7!

whereni are integers. We invert these equations and ob
an expression for the allowed values ofBj :

Bj5(
i

Aji
21ni . ~8!

Note that the elementsAji
21 are not necessarily integers

Let m be the least common denominator of all of the e
ments ofA21. This means thatmAji

21 is an integer for every
j ,i . We see from Eq.~8! that if we increase~or decrease! any
of the ni by m, the value ofBj changes by an integer an
therefore does not result in an additional nonequivalenkW

vector. Therefore a complete set of nonequivalentkW vectors
can be generated from values ofni in the range 0<ni,m.
This requires solving Eq.~8! m3 times.

We next identify the star ofkW to which each of thesekW
vectors belong. This gives us a complete set of possible s
of kW which can be involved in the phase transition. Only t
IR’s associated with these stars can satisfy Eq.~1!.

Let us summarize the algorithm.
~1! Obtain a list ofkW vectors from Eq.~8!, trying every

integer 0<ni,m. This means solving Eq.~8! m3 times re-
sulting in a list ofm3 kW vectors.

~2! Determine which star eachkW vector belongs to.
~3! For each IR of each star, use Eq.~1! to determine if

the IR is involved in the phase transition (nsÞ0).
~4! For each IR involved in the phase transition, det

mine the direction of the OP by solving simultaneously E
~2! for each generatorh of L.

~5! Obtain the space-group symmetryL8 determined by
the OP by finding all operatorshPH which satisfy Eq.~2!
for the OP found in the previous step.

The COPL algorithm has been implemented using
data base of theISOTROPY software. Specifically, a genera
implementation of the COPL algorithm requires informati
about space group settings, lattice vectors, reciprocal la
vectors, stars ofkW , IR’s belonging to stars ofkW , and matrices
3-2
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COMPLETE LISTING OF ORDER PARAMETERS FOR A . . . PHYSICAL REVIEW B65 014113
onto which the IR’s map operators of the space group. Th
are not just the the matrices of the IR’s of the little groups
kW ~which is what you usually find in tables of IR matrices!,
but the matrices of the complete IR of the space group.

III. EXAMPLES

After the discovery of its ferroelectricity in 1945, BaTiO3
became one of the most widely investigated ferroelec
materials.10 Both static and dynamic investigations studi
the transitions in this material. It has the prototype perovs
structure above 120 °C and becomes tetragonal, then o
rhombic, and finally trigonal as temperature is lowered. T
barium atoms are at the Wyckoff~a! site and the titanium
atoms at the~b! site.11 The change in symmetry fromPm3̄m
to P4mm occurs in the first transition. For this transitio
P4mm has the lattice vectors (1,0,0),(0,1,0),(0,0,1), and
origin at (0,0,0) for one of the orientations of the tetrago
phase. The new lattice and origin are given here in term
the parent group lattice vectors. The following is the co
plete listing of OP’s and their directions for this speci
L,H pair obtained by the COPL algorithm

G1
1 ~a! Pm3̄m 1

G3
1 ~a,0! P4/mmm 1

G4
2 ~0,0,a! P4mm 1.

Here we indicate each IR determined by this group-subgr
pair, the direction of the OP in IR carrier space, the subgr
determined by the OP, and the relative size of the unit cel
the subgroup. The labeling of IR’s is that of Miller an
Love12 and the specific form of the OP depends on the cho
of matrices for the IR. We used our own matrices which m
be obtained fromISOTROPY.4,9 Symmetry does not determin
the value of the OP but will specify lines, planes, gene
points, etc. For example, the symbola in the OP forG4

2

represents an arbitrary constant and indicates that any p
of the line along the third IR axis gives the same subgro
The physical distortion associated with the (0,0,a) direction
of G4

2 is the onset of polarization in thez direction, with the
(a,0) direction ofG3

1 is the onset of tetragonal strain alongz,
and with the~a! direction of G1

1 is a volume change. This
example of the use of the COPL algorithm is straight forwa
and offers no surprises.

Ferroelectric perovskiteA(B8B9)O3 alloys are of impor-
tance lately because of their large piezoelectric proper
and the discovery of a monoclinic phase13 between the te-
tragonal and rhombohedral phases. An analysis of the exp
mental data of a Pb-based perovskite alloy has been giv14

based upon the symmetry adapted free energy functions
different phases obtained as subgroups ofPm3̄m. The pri-
mary OP space is taken to beG4

2 , the same as that used
the preceding paragraph, and the different phases are
tained for different directions of the OP within that spac
The OP direction for the monoclinicMa phase lies in the
plane (a,a,b),4,9 and its symmetry isCm. (a and b are
independent arbitrary constants. We cannot determine th
01411
se
f

c

e
o-
e

l
of
-

p
p
f

e
y

l

int
.

d

s

ri-

or

b-
.

ra-

tio of b/a using symmetry alone.! This subgroup can be
realized as a minimum of the Landau free energy if one g
to high enough order in the expansion4 but the transition
cannot be continuous. We obtain the following complete li
ing of OP directions from the COPL algorithm for th
(a,a,b) direction with lattice vectors (1,1,0)
(21,1,0),(0,0,1) and origin at (0,0,0):

G1
1 ~a! Pm3̄m 1

G3
1 ~a,0! P4/mmm 1

G4
1 ~a,2a,0! C2/m 1

G5
1 ~a,b,b! C2/m 1

G2
2 ~a! P4̄3m 1

G3
2 ~a,0! P4̄2m 1

G4
2 ~a,a,b! Cm 1

G5
2 ~0,a,2a! Amm2 1.

The G4
2 IR again corresponds to the onset of polarizatio

The IR’s G5
1 and G3

1 correspond to shear and deviator
strain respectively. This example is relatively straight fo
ward and is of current scientific interest.

BaAl2O4 exhibits a ferroelectric phase transition at 396
The low symmetry phase isP63. Recently Abakumov
et al.15 investigated this transition by transmission electr
microscopy. They found that the transition leads to a d
bling of the hexagonal lattice parametera so that the ferro-
electric unit cell is four times larger. They proposed that t
high temperature, high symmetry phase isP6322 with origin
(0,0,0) and lattice vectors (2,0,0),(0,2,0),(0,0,1). The
COPL algorithm yields the following OP’s:

G1 ~a! P6322 1

G2 ~a! P63 1

M1 ~a,a,a! P6322 4

M2 ~a,a,a! P63 4.

We note that the low symmetry phase~space groupP63 and
size 4! is fully determined by the IRM2. Thus the OP
(a,a,a) for M2 is the primary OP. The OP’s for IR’sG1 and
M1 are secondary OP’s. All correspond physically to atom
displacement modes. This example is of interest beca
there is no published OP information for this transition.

Shape memory alloys are materials of practical imp
tance as they are being used as actuators, couplers, s
materials, medical guide wires, and stents, and they are
portant scientifically as fertile grounds for new methods
the investigation of phase transitions. The prototype sha
memory alloys are Ni-Ti, Au-Cd, and other pseudo-bina
alloys Ti(Ni,X)(X5Fe, Al,Cu). These materials exhibit
phase transition from theB2 structure~symmetryPm3̄m) to
the B198 structure ~symmetry P21 /m).16 The monoclinic
phase has the lattice vectors (1,1,0)(21,1,0)(0,0,1) and ori-

gin (0,12 ,0) relative to the original simple cubic phase. Fro
the COPL algorithm we obtain the following listing of OP’s
3-3
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G1
1 ~a! Pm3̄mm 1

G3
1 ~a,0! P4/mmm 1

G4
1 ~a,2a,0! C2/m 1

G5
1 ~a,b,b! C2/m 1

M2
2 ~a,0,0! P4/nmm 2

M3
2 ~a,0,0! P4/nmm 2

M5
2 ~0,0,a,0,0,0! Pmma 2.

IR’s G1
1 , G3

1 , andG5
1 yield strain contributions to the tran

sition while IR’sM2
2 , M3

2 , M5
2 define atomic displacemen

distortions. This example is of interest because the desc
tion of this transition has not included the full complement
OP’s and the corresponding distortions that accomp
them.17 It is also interesting in that the transition cannot
induced by a single IR. Notice that no single OP gives
subgroupP21 /m. However, there are sets of two couple
OP’s which do. The selection of the pairM5

2 ,M2
2 gives

P21 /m as does the pairM5
2 ,M3

2 (PmmaùP4/nmm
5P21 /m! with the same origin and basis. The choice
these two primary OP’s is arbitrary in that either pair can
used as the primary driving mechanisms for this transitio

There is another phase transition in the Ni-Ti alloys wh
has attracted considerable attention. This is the transi
from theB2 phase to theR phase (P3).16,18TheR phase has
a cell size increase of 9, the origin is at (0,0,0), and
lattice vectors are (2,21,21),(21,2,21),(1,1,1). From the
COPL algorithm we get the following complete listing o
OP’s:
0
,

T

01411
p-
f
y

e

f
e
.

n

e

G1
1 ~a! Pm3̄m 1

G2
1 ~a! Pm3̄ 1

G4
1 (a,a,a) R3̄ 1

G5
1 (a,a,a) R3̄m 1

G1
2 ~a! P432 1

G2
2 ~a! P4̄3m 1

G4
2 (a,a,a) R3m 1

G5
2 (a,a,a) R32 1

L1 ( 1
3 , 1

3 , 1
3 ) (a,0,0,0,b,0,0,0) P3m1 3

L2 ( 1
3 , 1

3 , 1
3 ) (a,0,0,0,b,0,0,0) P3 3

S1 ( 1
3 , 1

3 ,0) (0,a,b,0,0,a,0,2b,0,0,a,b) P312 9

S2 ( 1
3 , 1

3 ,0) (0,a,b,0,0,a,0,2b,0,0,a,b) P3 9

S3 ( 1
3 , 1

3 ,0) (0,a,b,0,0,a,0,2b,0,0,a,b) P3 9

S4 ( 1
3 , 1

3 ,0) (0,a,b,0,0,a,0,2b,0,0,a,b) P312 9.

In the above list theL and S IR’s occur on lines of

symmetry in the Brillouin zone. The coordinates of thekW

vector on those lines are given, following the IR symb
This example is of interest because of its large number
OP’s, and because the primary OP arises from a line of s
metry S, in the Brillouin zone. This example has addition
interest because there is an ambiguity in selecting the
mary OP. We see that each of the OP’sS2(0,a,b,0,0,a,0,
2b,0,0,a,b) andS3(0,a,b,0,0,a,0,2b,0,0,a,b) individually
fully determine theP3 subgroup.
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